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The drainage of a foam lamella
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We present a mathematical model for the drainage of a surfactant-stabilized foam
lamella, including capillary, Marangoni and viscous effects and allowing for diffusion,
advection and adsorption of the surfactant molecules. We use the slender geometry
of a lamella to formulate the model in the thin-film limit and perform an asymptotic
decomposition of the liquid domain into a capillary-static Plateau border, a time-
dependent thin film and a transition region between the two. By solving a quasi-steady
boundary-value problem in the transition region, we obtain the flux of liquid from
the lamella into the Plateau border and thus are able to determine the rate at which
the lamella drains.

Our method is illustrated initially in the surfactant-free case. Numerical results
are presented for three particular parameter regimes of interest when surfactant is
present. Both monotonic profiles and those exhibiting a dimple near the Plateau
border are found, the latter having been previously observed in experiments. The
velocity field may be uniform across the lamella or of parabolic Poiseuille type, with
fluid either driven out along the centreline and back along the free surfaces or vice
versa. We find that diffusion may be negligible for a typical real surfactant, although
this does not lead to a reduction in order because of the inherently diffusive nature
of the fluid–surfactant interaction. Finally, we obtain the surprising result that the
flux of liquid from the lamella into the Plateau border increases as the lamella thins,
approaching infinity at a finite lamella thickness.

1. Introduction
A foam is a gas–liquid mixture in which the liquid phase is connected but has a

small volume fraction. Foam is broadly classed as wet or dry, depending on the liquid
content. In a wet foam (with a liquid volume fraction of 10–20%), the bubbles are
approximately spherical, whereas a dry foam (in which the fraction of liquid is less
than 10%) consists of roughly polyhedral bubbles. The thin liquid films forming the
faces of the polyhedra are called lamellae and the tubes of liquid at the junctions of
the lamellae (i.e. along the edges of the polyhedra) are called Plateau borders, after
Plateau (1873). The vertices, where typically four Plateau borders meet, are referred
to as nodes.

A two-dimensional slice through the edge of a lamella is shown schematically in
figure 1. The curvature of the gas–liquid interface causes the liquid pressure to be
lower in the Plateau border than in the lamella. The resulting Plateau border suction
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Figure 1. Schematic of the edge of a lamella.

drives a flux of liquid from the lamella into the Plateau border. If there is nothing
to oppose this suction, then the lamella rapidly thins until it eventually becomes
unstable and ruptures. For this reason, foam consisting of pure liquid (e.g. pure
water) is relatively short-lived. One way in which its lifetime may be significantly
extended is through the addition of a surface-active agent, otherwise known as a
surfactant.

Surfactant molecules prefer to reside at a gas–liquid interface rather than in the
bulk (Adamson 1982) and adsorption of surfactant in this manner reduces the surface
tension of the interface (Atkins 1999). Non-uniform adsorption due, for example, to
surface dilatation may therefore result in a surface tension gradient (Manning-Benson,
Bain & Darton 1997; Bain, Manning-Benson & Darton 2000). This in turn leads to
a so-called Marangoni shear stress acting on the liquid at the interface, and hence
the flow is accelerated or retarded, depending on the direction of the gradient relative
to the bulk liquid flow. This effect tends to stabilize a lamella if the surface shear
opposes the Plateau border suction and, conversely, has a destabilizing influence if
the Marangoni stress enhances the Plateau border suction.

Allowed to drain in a controlled environment, a lamella may become so thin
that intermolecular forces arising from the interaction between the two free surfaces
come into play. These forces, if repulsive, can balance capillary suction, resulting in
a stable black film, of thickness 10−9–10−8 m. A lamella may also be stabilized by
the formation of a solid surface layer, for example in an ageing soap film. Neither
of these mechanisms will be considered here; our concern is with a fundamentally
unstable film, whose lifetime may nevertheless be extended considerably by Marangoni
stresses caused by the presence of surfactant. As indicated in figure 1, we focus on
the edge of a single lamella. Our aim is to predict the flux of liquid sucked into
the neighbouring Plateau border and, thus, the rate at which the lamella thins. This
process is fundamental to lamella rupture and, therefore, to bubble coalescence and
foam collapse.

Experimental work on in situ foam lamellae remains sparse owing to the difficulties
inherent in probing a foam. However, some work has been carried out on isolated
liquid films. For example, Joye, Miller & Hirasaki (1992) present interference patterns
from a single lamella containing surfactant above the critical micelle concentration (the



The drainage of a foam lamella 381

concentration at which surfactant molecules associate in the bulk to form micelles).
Their results support the notion that such films exhibit a dimple close to the Plateau
border, as do their numerical solutions of a simple heuristic model. Experiments have
also been carried out on individual liquid films to determine their internal pressure
and also to drain the liquid from the films mechanically; see Shugai (1998) for more
details and a literature review.

Many authors have attempted to model lamella drainage. Several have followed an
approach analogous to ours, namely decomposition of the film into various regions
which are then matched or patched together. Schwartz & Princen (1987) consider
four regions: a Plateau border, a transition region, a laid-down film and a black
film. They apply a no-slip boundary condition, under the assumption that the gas–
liquid interface is ‘loaded with surfactant’. The resulting lubrication-style differential
equation is solved under matching conditions with the Plateau border and with the
laid-down film. Barigou & Davidson (1994) also decompose the liquid into four
regions: a border region, two transition regions and a lamella. They treat the Plateau
border as immobile and the lamella as free – the converse of the Schwartz & Princen
conjecture. Again, the result is a lubrication-style equation, which is combined with
heuristic shear and mass balances to estimate the lamella thinning rate. They also
discuss the possibility of a sharp border contraction, corresponding to the dimpled
effect at the edge of the lamella inferred by Joye et al. (1992), and conclude that the
pressure distribution in such a configuration is ‘physically impossible’.

Braun, Snow & Pernisz (1999) model a vertical film draining under gravity, includ-
ing viscous and capillary effects. They also assume that the free surface is loaded
with surfactant and so employ the no-slip boundary condition. The resulting time-
dependent lubrication equation is matched with a hydrostatic meniscus, close to which
numerical solutions exhibit dimples. Naire, Braun & Snow (2000a, b) replace the no-
slip assumption with a surface viscosity and include a Marangoni stress induced by an
insoluble surfactant. They show that increasing the surface viscosity slows down the
film drainage and that, in the limit of high viscosity, the no-slip boundary condition
is recovered. The materials in which we are interested have negligible surface viscosity
so the surface traction can be adequately described using a Marangoni stress.

Many previous authors have used a long-wave asymptotic limit to obtain quasi-
one-dimensional models for thin unsupported liquid films. For example, Ting &
Keller (1990) consider pure inviscid liquid sheets, whereas Howell (1996) derives
models for pure viscous sheets; Erneux & Davis (1993) and De Wit, Gallez &
Christov (1994) include van der Waals forces, and the effects of insoluble surfactant
are incorporated by Ida & Miksis (1998a, b). The governing equations stated in § 2
represent an analogous limit of the underlying Navier–Stokes, advection–diffusion
and appropriate free-surface equations; a brief derivation may be found in Breward
et al. (1997) and further details in Breward (1999). As in Barigou & Davidson (1994)
and Schwartz & Princen (1987), our approach is to decompose the liquid into various
domains, in which different asymptotic regimes prevail. Our model differs from all of
these previous attempts to model lamella drainage because we include the effects of
surfactant solubility and we adopt a systematic asymptotic matching approach.

In § 2, we present the thin-film equations describing the evolution of the film
thickness, the liquid velocity and the concentration of surfactant. In § 3, we use the
simplified problem of surfactant-free drainage to illustrate our domain decomposition.
An analogous decomposition is then applied to surfactant-stabilized drainage in § 4,
resulting in a quasi-steady boundary-value problem, whose properties are explored
analytically. Numerical solutions for three particular parameter regimes of interest
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are presented in § 5. Of particular interest is the observation that the flux of liquid
from the lamella into the Plateau border increases as the lamella thins, sometimes
appearing to approach infinity at a finite lamella thickness. We explore this possibility
using asymptotic analysis in § 6. Finally, in § 7 we summarize our conclusions and
discuss extensions to this work.

2. The mathematical model
2.1. Thin-film equations

We consider the two-dimensional geometry shown in figure 1, with coordinates x∗
pointing along the centreline of the lamella, y∗ in the transverse direction and t∗
denoting time. The centreline of the lamella is assumed to be flat, since centreline
curvature may be shown to decouple from the flow equations derived below, so long
as the radius of curvature is small compared with the film thickness (Breward 1999).
The liquid velocity and pressure are denoted by u∗ = (u∗, v∗)T and p∗, respectively, and
the lamella thickness by h∗, so that the two free surfaces are given by y∗ = ± 1

2
h∗(x, t).

The liquid density ρ and shear viscosity µ are assumed to be constant, and the
surface tension γ∗(x, t) to be equal on the two interfaces – see Breward (1999) for
generalizations. Finally, the liquid velocity is characterized by a typical value U, and
the lamella geometry by a typical initial thickness h0 and length L.

The Navier–Stokes equations and the usual free-surface conditions are non-
dimensionalized as follows:

(x∗, y∗) = L(x, εy), t∗ = (L/U)t,
(u∗, v∗) = U(u, εv), p∗ = (µU/L)p,

h∗ = h0h, γ∗ = γ + (∆γ)σ(x, t).

 (2.1)

Here, γ is the surface tension of the pure liquid, and γ−∆γ is the surface tension of a
stationary surface of the surfactant solution in equilibrium (on which σ = −1). Note
that frequently ∆γ � γ. We relate ∆γ to material properties of the surfactant at the
end of § 2.2. The dimensionless groups in the problem are the slenderness parameter,
Reynolds number, capillary number and Marangoni number, given respectively by

ε =
h0

L
, Re =

ρLU

µ
, Ca =

µU

γ
, Ma =

∆γ

µU
.

The thin-film equations are obtained by taking the asymptotic limit ε→ 0. In doing
so, it is usually necessary to take a view on the size of the other three dimensionless
parameters compared to ε. However, we do not in advance know the correct scaling
for the liquid velocity U; in fact, the velocity at which liquid flows out of the lamella
is an important prediction of our model. The only assumption we can make with
any certainty is that the Reynolds number is small, so that inertia may be neglected,
at the velocities of interest. It then transpires (see Breward 1999) that there are two
distinguished limits of the thin-film equations. In the first, there is a balance between
extensional viscous, capillary and Marangoni effects, with a plug flow velocity profile
(to leading order), whereas in the second, capillary and Marangoni effects balance
and the velocity profile is parabolic. Since, as noted above, the velocity scaling U
is unknown a priori, we present the following master equations which contain both
distinguished limits (and hence all the other possible parameter regimes). To derive
these equations, we use the following procedure. First, we pick the size of the capillary
and Marangoni numbers. Then we derive, from the governing equations and boundary
conditions, the appropriate thin-film equations corresponding to this choice of Ma



The drainage of a foam lamella 383

and Ca . We carry out this process for all values of Ca and Ma corresponding to
distinguished asymptotic limits, and then combine all the resulting equations into the
master equations presented below. The details of the calculations may be found in
Breward (1999).

The thin-film equations comprise a pair of coupled nonlinear partial differential
equations for the film thickness h and the cross-sectionally averaged longitudinal
velocity, ū(x, t):

ht + (ūh)x = 0, (2.2)

(4hūx)x +
ε

2Ca
hhxxx +

2Ma

ε
σx = 0, (2.3)

where u is related to ū by

u = ū+
ε3

4Ca
hxxx

(
h2

12
− y2

)
, (2.4)

and the pressure reads

p = −2ūx − ε

2Ca
hxx. (2.5)

Equations (2.2) and (2.3) represent conservation of mass and a longitudinal force
balance, respectively. In (2.3), the first term represents extensional (viscous) forces,
the second, capillary forces, and the third, Marangoni forces.

Notice that the two distinguished limits are (i) Ca = O(ε) and Ma = O(ε), when
the first two terms in (2.3) balance and u = ū to lowest order; (ii) Ca = O(ε3)
and Ma = O(ε−1), when (2.4) gives a parabolic flow profile and the second term in
(2.3) necessarily dominates the first. The system (2.2)–(2.3) is closed by specifying the
surface tension variation σ, which depends crucially on the local concentration of
surfactant.

2.2. Surfactant modelling

For a soluble surfactant, we must distinguish between surfactant molecules in solution,
at a bulk concentration C∗ (mol m−3), and those that are adsorbed in the surface, with
surface concentration Γ ∗ (mol m−2); see Chang & Franses (1995). Assuming they are
in thermodynamic equilibrium, there is a functional relationship between Γ ∗ and C∗
at the free surfaces. (Note that the assumption of thermodynamic equilibrium requires
that the time scales for adsorption and desorption of surfactant at the free surface be
much smaller than the drainage time scale used in this problem. We put bounds on
the time scale associated with adsorption and desorption in § 4.1.) At reasonably low
surfactant concentration this may be linearized to give the Henry isotherm Γ ∗ = ηC∗
(Chang & Franses 1995), for some material constant η with the dimensions of length.
Surfactant in solution is transported by convection and diffusion, with constant
bulk diffusivity D. The adsorption of surfactant into the free surface is balanced by
diffusive flux from the bulk, and adsorbed molecules are transported by convection
in the interface. We neglect surface diffusion in this paper for simplicity. We shall see
later that the various phenomena that we have included work together to produce a
diffusion-like effect, in keeping with the findings of Breward et al. (2001) and Howell
& Breward (2002).

The convection–diffusion equation for the bulk concentration and the associated
boundary conditions are non-dimensionalized using

C∗ = C0C, Γ ∗ = ηC0Γ ,
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where C0 is a typical bulk surfactant concentration. The dimensionless groups that
emerge are the Péclet number and the replenishment number, given respectively by

Pe =
UL

D
, S =

D

Uη
.

Again, we formulate a thin-film simplification of the governing equations in the limit
ε→ 0. Under the assumption that ε2Pe � 1 (the so-called well-mixed approximation),
the bulk concentration is uniform across the film, i.e. C = C(x, t), and satisfies

(hCx)x − Peh(Ct + ūCx)− 2

εS
(Ct + (usC)x) = 0. (2.6)

The three terms in (2.6) represent successively bulk diffusion, bulk convection and
surface convection. In the final term, us is the surface velocity given, using (2.4), by

us = ū− ε3

24Ca
h2hxxx. (2.7)

The final coupling between (2.6) and the thin-film equations (2.2) and (2.3) arises
from the equation of state relating the surface tension to the surface concentration.
Again, at reasonably low concentration the relation is approximately linear, so we set

γ∗ = γ +

(
dγ∗

dΓ ∗

)
Γ ∗,

where (dγ∗/dΓ ∗) is a negative constant. We may then choose the unknown quantity
∆γ in the Marangoni number to be

∆γ = −ηC0

(
dγ∗

dΓ ∗

)
,

and it follows that

σ = −C. (2.8)

With (2.4) and (2.8), (2.2), (2.3) and (2.6) constitute a closed system for h, ū and C .

3. Surfactant-free drainage
3.1. Domain decomposition

In this section, we illustrate our solution procedure by addressing the surfactant-free
problem. This corresponds to setting C = Γ = σ = 0, so only (2.2) and (2.3) remain
to be solved. We show the liquid domain under consideration in figure 2. Our first
modelling assumption is that the velocity of the liquid in the Plateau border is small
enough that we may treat the Plateau border as capillary-static. Thus, its free surfaces
have constant mean curvature which, in our two-dimensional geometry, implies that
they must be circular arcs of constant radius a. These intersect tangentially at three
points, the points where the lamellae meet the Plateau border. For bubbles of a given
size, the radius a is determined by the liquid fraction in the foam.

In the lamella, the free surfaces are almost flat and here we suppose that capillary
effects are negligible. Near to the Plateau border, however, this assumption must
break down, because the curvature of the film has to increase from practically zero
to O(1/a) to match into the Plateau border. In this transition region, capillary and
viscous forces are both important, and the correct velocity scaling is selected by
ensuring that they balance. Our procedure, therefore, is to decompose the liquid
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domain into (i) a viscous lamella, (ii) a capillary-static Plateau border, and (iii) a
transition region between the two in which viscous and capillary forces balance; see
figure 3. An analogous decomposition was used by Howell (1999) to describe the
drainage of a bubble at the surface of a bath of liquid.

The transition region has to match with the lamella, of typical thickness h0, and
with the curvature 1/a in the Plateau border, i.e., h∗ → h0 as we approach the lamella,
whereas h∗x∗x∗ → 1/a as we approach the Plateau border. It follows that its length
scale must be of order δL, where

δ =

√
h0a

L
. (3.1)

Since h0 � L and a is at most O(L), δ is a small parameter, representing the fact that
the transition region is short compared to the lamella. Nevertheless, the slenderness
parameter for the transition region,

h0

δL
=
ε

δ
=

√
h0

a
,

is also typically small. For example, for bubbles with the following characteristic
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dimensions

h0 ≈ 10−6 m, L ≈ 10−3 m, a ≈ 4× 10−4 m,

we find δ ≈ 0.02 and ε/δ ≈ 0.05. We therefore consider the asymptotic limit ε� δ �
1, in which the thin-film equations may still be applied in the transition region.

Having decided on the length scale of the transition region, we obtain the appro-
priate velocity scaling U by balancing the first two terms in (2.3), whence

Ca =
ε

δ
⇒ U =

γ

µ

√
h0

a
. (3.2)

Notice that this choice of U, along with the asymptotic assumption ε� δ � 1 implies
that capillary effects are indeed negligible in the lamella to leading order, and likewise
that viscous effects are asymptotically small in the Plateau border, as hypothesized.

3.2. Solution in the lamella

The leading-order model in the lamella reads

ht + (ūh)x = 0, (4hūx)x = 0, (3.3)

along with boundary conditions describing the symmetry of the system and the flux
from the lamella into the Plateau border,

ū = 0 at x = 0, (3.4)

ū =
Q(t)

h
at x = 1. (3.5)

The flux Q remains to be determined by analysing the transition region. An initial
condition is also required and, for simplicity, we set the thickness of the lamella to
be initially uniform: h = 1 at t = 0. In this case, it is straightforward to show that h
remains spatially uniform in the lamella and the solution is

h = h`(t), u =
Qx

h`
, (3.6)

where h` satisfies

dh`
dt

= −Q, h`(0) = 1. (3.7)

3.3. Solution in the transition region

The equations in the transition region are found by scaling (2.2) and (2.3) using
x = 1 + δξ which yields, at leading order,

(ūh)ξ = 0, (3.8)

(4hūξ)ξ + 1
2
hhξξξ = 0. (3.9)

Boundary conditions for (3.8) and (3.9) are obtained by matching with the lamella
and with the Plateau border

h→ h`, u→ h`/Q as ξ → −∞, (3.10)

hξξ → 1 as ξ →∞, (3.11)

Equation (3.8) implies that the flux is uniform through the transition region

ūh = Q(t). (3.12)
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Then (3.9) becomes a quasi-steady ordinary differential equation for h, with Q as
a parameter. Crucially, the boundary conditions (3.10) and (3.11) overdetermine the
differential equation (3.9) and therefore give rise to a relationship between Q and h`,
namely

Q(h`) =
3
√

2h
3/2
`

16
. (3.13)

This quantifies the Plateau border suction of liquid out of the lamella and, therefore,
determines the rate at which the lamella thins. Notice that the flux is an increasing
function of the lamella thickness, as might have been anticipated.

With Q given by (3.13) the transition region model may be solved analytically to
give

2
√
ĥ− 2√

3
arctan

[
1 + 2

√
ĥ√

3

]
+

1

3
log

[
1− 2

√
ĥ+ ĥ

1 +
√
ĥ+ ĥ

]
=
√

2ξ̂, (3.14)

where ĥ = h/h`, ξ̂ = ξ/
√
h` and the constant of integration (corresponding to an

arbitrary translation in ξ) has been set to zero. A plot of the solution is given in
figure 4; note that the profile is monotonic increasing.

Finally, we obtain the pressure in the transition region, using the scaled form of
(2.5) and the solution (3.14):

p = −1

2
+

1

4ĥ3/2
+

1

4ĥ3
. (3.15)

A plot of the pressure distribution is shown in figure 5. The pressure decreases
monotonically from zero in the lamella to − 1

2
in the Plateau border. It is the large

negative pressure in the Plateau border (compared with the lamella) that drives the
flow and causes the lamella to drain.

3.4. Lamella drainage

The initial-value problem (3.7) satisfied by h`(t) is easily solved, with Q(h`) given by
(3.13), to obtain the evolution of the lamella thickness:

h` =

(
1 +

3
√

2

32
t

)−2

. (3.16)
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The solution for h` given in (3.16) does not tend to zero in finite time. In practice,
when the film becomes sufficiently thin (100 Å–1000 Å), intermolecular forces not
included in this model come into play and (if destabilizing) cause the film to rupture
rapidly (Erneux & Davis 1993; De Wit et al. 1994; Ida & Miksis 1996). The modelling
of these effects involves introducing a parameter, the Hamaker constant, which is not
known with any certainty. Instead, we impose a critical thickness h∗rup (assumed to be
a material property of the film) at which the lamella ruptures, in terms of which the
dimensional lamella lifetime reads

t∗rup =
32µL

√
a

3γ
√

2

[(
1

h∗rup

)1/2

−
(

1

h0

)1/2
]
, (3.17)

For water, µ ≈ 10−3 kg m−1 s−1 and γ ≈ 7×10−2 N m−1 and, if we suppose the film has
initial thickness 1 µm and critical rupture thickness 0.1µm, then the time to rupture
is t∗rup ≈ 4× 10−3 s. Clearly, for foam with a lifetime of many seconds or minutes, the
presence of a surfactant must alter the dominant balance so as to slow down drainage
significantly.

4. Drainage with surfactant
4.1. Domain decomposition

In this section, we show how ideas similar to those applied above for surfactant-free
drainage may be applied to the more complicated situation where there is surfactant
present. Evidently, the full equations (2.2), (2.3) and (2.6) contain several more possible
physical balances than does the simplified model analysed in § 3, and it is therefore
somewhat less clear how the velocity scale should be chosen. Nevertheless, it seems
likely that a similar domain decomposition to that employed above should also prevail
here; we anticipate that capillary effects should dominate in the Plateau border, be
negligible in the lamella and balance with other physical effects in a quasi-steady
transition region between the two. The length scale of the transition region is δL, as
in § 3, so that it can be matched with both the lamella and the Plateau border.

Now, for velocities of practical interest (O(10−3) m s−1 say), the reduced capillary
number Ca/ε is small, which implies that extensional viscous effects are negligible
everywhere. This means that the theory of § 3 is not recovered by applying the limit
as Ma → 0 to the theory presented in this section. The intermediate regime, in which
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capillary, Marangoni and extensional viscous forces all balance, does not appear to be
of interest to this study, given the size of the parameters. With small capillary number
we have a capillary-static Plateau border and, since the curvature of the lamella is
small, we conclude that the lamella must be dominated by Marangoni forces. Our
transition region in this case is therefore where the capillary and Marangoni terms
balance, although we are unable to obtain a velocity scaling from such a balance,
since the remaining dimensionless group in (2.3), CaMa/ε2 = ∆γ/(ε2γ), is independent
of U. The surface tension gradients required to balance capillarity in (2.3), however,
correspond to gradients in surfactant concentration, which must be generated by the
surfactant-transport equation (2.6). Therefore, U is chosen to ensure a non-trivial
balance in (2.6) in the transition region:

U =
D

η

√
h0

a
. (4.1)

As noted in Breward et al. (2001), surface tension gradients are ultimately set up by
diffusion, and the selected velocity scale is thus diffusional.

With this choice for U, we have selected the timescale for transport by convection
in the transition region, which, in terms of the parameters, reads

T =
δL

U
=
ηa

D
. (4.2)

Thus, for our assumption that the surfactant at the free surface is in thermodynamic
equilibrium with the bulk to hold, the timescales for adsorption and adsorption must
be much less than the timescale given by (4.2).

Depending on the sizes of the remaining dimensional parameters in the problem,
several different asymptotic regimes may prevail. We start by considering the distin-
guished limit in which as many effects as possible balance in the transition region;
special cases in which various terms may be neglected are considered in § 5. We
therefore define

P = δPe =
h0

η
, β =

ε3

12δ3Ca
=

ηγh0

12µDa
, T =

4δ2∆γ

ε2γ
=

4a∆γ

h0γ
, (4.3)

and assume that the three parameters P, β and T are all O(1). Under these as-
sumptions, we analyse separately the flows in the lamella, the Plateau border and
the transition region and then match the three together. Extensional viscous forces
are negligible at leading order in all three regions, so the physical structure of the
problem is quite different from the pure liquid film discussed in the previous section.
Here, the flow is completely governed by what is happening at the free surfaces.

4.2. Solution in the lamella

Under the assumptions (4.3), the flow in the lamella is extensional, diffusion is
negligible and the leading-order model that holds is

ht + (ūh)x = 0, (4.4)

Cx = 0, (4.5)

PhCt + 2Ct +PūhCx + 2(usC)x = 0, (4.6)

us = ū. (4.7)
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As boundary conditions, we impose symmetry at the centre of the lamella and assume
a flux Q(t) flows into the Plateau border,

u = 0 at x = 0, (4.8)

u =
Q

h
at x = 1, (4.9)

where Q remains to be determined by analysing the transition region.
Since extensional viscous effects are negligible, there is nothing to balance

Marangoni stress in (4.5) and it follows that the surfactant concentration in the
lamella is spatially uniform: C = C`(t). If a non-constant concentration were applied
initially, it would rapidly equilibrate over a short time scale. Now, when the foam
is initially formed, it will be wet, the bubbles spherical, and the concentration of
surfactant uniform around the surface of the bubble. Since, in this paper, we are
considering a dry foam, we may suppose that significant drainage has occurred and
thus the concentration of surfactant contained in the lamella has decreased compared
with that in the Plateau border. We model the net result of any such adjustment
by imposing a uniform concentration CI at t = 0, and allow CI 6 1 compared with
C = 1 in the Plateau border.

We also assume, as in § 3, that the film thickness is initially uniform: h = 1 at t = 0.
Then h remains spatially uniform in the lamella, and the solution of (4.4)–(4.9) is

h = h`(t), C = C`(t) = CI
(2 +P)h`
2 +Ph` , u =

Q

h`
x, (4.10)

where h`(t) again satisfies the initial-value problem (3.7).

4.3. Solution in the transition region

In the transition region, the rescaling x = 1 + δξ results in

(ūh)ξ = 0, (4.11)

hhξξξ −TCξ = 0, (4.12)

(hCξ)ξ −PhūCξ − 2(usC)ξ = 0, (4.13)

us = ū− 1
2
βh2hξξξ. (4.14)

The matching conditions with the lamella and the Plateau border read

h→ h`, ū→ Q

h`
, C → C` = CI

(2 +P)h`
2 +Ph` as ξ → −∞, (4.15)

hξξ → 1, C → 1 as ξ →∞. (4.16)

Notice our assumption here that the concentration in the Plateau border is constant;
we return to this point in § 4.4.

This boundary-value problem may be simplified by solving (4.11) for ū, integrating
(4.12) and (4.13) once each with respect to ξ and applying the matching conditions
to obtain the following coupled equations for h and C:

T(C − C`) = hhξξ − 1
2
h2
ξ, (4.17)

(1 + βTC)hCξ = PQ(C − C`) + 2Q

(
C

h
− C`

h`

)
. (4.18)
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Unfortunately, unlike the surfactant-free case, these equations cannot be solved ana-
lytically. To find the flux Q we therefore have to solve (4.17) and (4.18), with the
matching conditions (4.15) and (4.16), numerically, and this is carried out for several
parameter regimes of interest in § 5.

4.4. Analysis of the Plateau border

Here, we give a simple order-of-magnitude argument to show that the surfactant
concentration is effectively constant in the Plateau border. The flux of surfactant
leaving the lamella by a combination of surface and bulk convection reads, in
dimensional variables,

Flux out ∼ Q∗C∗` , (4.19)

where C ∗̀ is the concentration in the lamella. We equate this to the flux into the
Plateau border, and thus obtain, in dimensionless form,

dCPb
dt
∼ ε3

δ4
QC`. (4.20)

Using typical parameter values, we find that ε3/δ4 ≈ 10−1 and conclude that, providing
Q = O(1) or smaller, CPb is constant on the time scale for lamella drainage.

Of course, there may well be parameter regimes in which this simple mass balance
argument does imply significant variation in CPb. In a real foam, however, both the
radius of curvature a and the surfactant concentration in the Plateau border are
determined by the flow along the Plateau border, i.e. in the third dimension not
considered here. Without addressing a much more complicated three-dimensional
problem, assuming that they are both constant seems to be the most sensible option.

4.5. Asymptotic behaviour of solutions at ±∞
Before proceeding with the numerical solution of (4.17)–(4.18), we must check that
the boundary conditions (4.15)–(4.16) are sufficient to specify the solution uniquely.
To do so, we linearize about the behaviour h ∼ 1

2
ξ2 and C = 1 as ξ → ∞. If Q is

specified then, once translational invariance has been accounted for, the solution ema-
nating from ξ = +∞ is uniquely determined by (4.17)–(4.18) and has the asymptotic
behaviour

h ∼ ξ2

2
+ (1− C`)T+

2(−P+ CI (2 +P))QT
3(1 + βT)ξ

+ O

(
1

ξ2

)
, (4.21)

C ∼ 1 + 2
(−P+ CI (2 +P))Q

(1 + βT)ξ
+ O

(
1

ξ2

)
. (4.22)

The qualitative behaviour of C depends on the parameter

K =
P

(2 +P)CI
;

if K < 1, then C → 1 from below, otherwise, C → 1 from above. Thus, we see that
C does not necessarily attain its maximum value in the Plateau border.

At the other end of the range, we linearize about h = h`, setting

h ∼ h` + aeλξ, C ∼ C` + aTh`λ2eλξ.

From (4.17) and (4.18), we obtain

χ3 − qχ2 + q = 0, (4.23)
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where

χ =

(
h`

2

√T(2 +Ph`)
2C`

)
λ, q =

2Q

h`(1 + βTC`)√TC`
(

1 +
Ph`

2

)3/2

.

Here, the structure of the solution depends on the sign of Q. Motivated by the
purely viscous calculation of § 3, and on physical grounds, we anticipate that Q
should be positive, i.e. that liquid should flow from the lamella into the Plateau
border. Therefore, we assume that q > 0 and, because χ3− qχ2 + q has opposite signs
at χ = 0, −1, (4.23) has at least one negative real root, χ = −χ0(q) say, where

χ0 =
1

3

(
q2

f(q)
+ f(q)− q

)
∈ (0, 1), (4.24)

and

f(q) =

(
27q − 2q3 + 3

√
3q
√

27− 4q2

2

)1/3

. (4.25)

Note that, while f(q) = A+ iB is complex for q > 3
√

3/2, χ0, given by

χ0 =
1

3

(
A− q +

q2A

A2 + B2
+ iB

(
1− q2

A2 + B2

))
, (4.26)

is real, since it is easy to show by direct calculation that A2 +B2 = q2. The other two
roots are, in terms of χ0,

χ± =
χ0

2(1− χ2
0)

(1±
√

4χ2
0 − 3), (4.27)

which are real and positive if χ0 >
√

3/2 (i.e. if q > 3
√

3/2) and form a conjugate

pair with positive real part if χ0 <
√

3/2 (i.e. if q < 3
√

3/2). In terms of the original
parameters, the condition for real roots is

B =
4
√

2Q(1 +Ph`/2)2√
27Xh3

`(1 + βXh`/(2 +Ph`))
< 1. (4.28)

where X =TCI (2 +P). So, as we approach ξ = −∞, we find that we must suppress
one growing mode (the one given by χ = −χ0), and the other two modes decay either
monotonically or in an oscillatory fashion, as dictated by the size of B. Since Q is
not known a priori, it is not possible to decide whether or not to expect oscillatory
solutions before attempting the numerical solution. Nevertheless, if we shoot from
ξ = +∞ and specify h`, then there is just one free parameter Q to vary so as to
eliminate the one growing mode as ξ → −∞. This suggests that the boundary-value
problem (4.15)–(4.18) is indeed correctly specified and will allow us to determine the
flux Q as a function of h`.

5. Numerical results
5.1. Solution in the plug flow limit

In this section, we present some numerical solutions of the boundary-value problem
(4.15)–(4.18). We use Mathematica (see Wolfram 1999) to solve the system of equa-
tions, and we employ a shooting method from ‘+∞’: specifying hl and varying Q until
the boundary conditions at ‘−∞’ are satisfied. Initially, we consider the simplified limit
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Figure 6. Results for thickness and concentration in a monotonic solution.
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Figure 7. Results for thickness and concentration in a non-monotonic solution.

β = 0 so we can study how the drainage of the lamella proceeds without concerning
ourselves with the parabolic flow. For each value of the lamella thickness h`, the
lamella concentration C` is given by (4.10). So, once the remaining parameters P,
T and CI are specified, we can in principle calculate Q for each value of h` and
thus determine the rate at which the lamella drains. To demonstrate two classes of
solutions to the transition region model, we start by keeping h` = 0.8, P = 5 and
T = 5 fixed while varying CI .

In our first solution, we set CI = 0.5 and find that Q = 0.4292. We calculate
B = 1.405 > 1, which implies monotonic behaviour as ξ → −∞. We also haveK > 1
and so expect C → 1 from below as ξ →∞. The numerically calculated film thickness
and surfactant concentrations are shown in figure 6. They exhibit monotonic increase
in both h and C , as predicted.

Secondly, we set CI = 1, and we find that Q = 0.0349. Here, we haveB = 0.0808 < 1
and K < 1, and therefore anticipate oscillatory behaviour at −∞ and that C → 1
from above as ξ → +∞. Numerical plots of the film thickness and concentration of
surfactant in this case are shown in figure 7. Both the film thickness and the surfactant
concentration are non-monotonic in this case.

We show plots of the surface convective flux 2QC/h, bulk convective flux PQC
and the diffusive flux −hCξ in figure 8(a) for the parameter values corresponding to
the monotonic solution shown in figure 6. The diffusive flux is always negative, i.e.
diffusion transports surfactant from the Plateau border into the lamella, while the
convective fluxes are both positive, indicating that surfactant is convected from the
lamella to the Plateau border. Bulk convection appears to be the dominant mechanism
for surfactant transport.

We repeat this procedure for the same parameters as in the non-monotonic solution
of figure 7, and plot the results in figure 8(b). Again, bulk convection and surface
convection transport surfactant from the lamella into the Plateau border, but now
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transport by diffusion is more complicated. Recall that the concentration profile
in this parameter regime is non-nomotonic, and that the concentration achieves a
maximum within the transition region. As might be anticipated, diffusion transports
surfactant out from this maximum (both towards the Plateau border and further into
the transition region).

We now calculate the pressure in the transition region using

p = − 1
2
hξξ (5.1)

(recall that the extensional viscous term is negligible here). Unsurprisingly, in a mono-
tonic solution, shown as a solid curve in figure 9, the pressure decreases monotonically
from 0 to − 1

2
, whereas in a non-monotonic solution, shown as a dashed curve, the

pressure variation is likewise non-monotonic. In the latter case, the pressure attains a
positive maximum in the transition region before a sudden decrease and then tends to
− 1

2
from below, behaviour similar to that dismissed by Barigou & Davidson (1994).

They impose a sharp change in boundary structure (from a stress-free boundary in
the lamella to a no-slip boundary in the transition region), which gives rise to a step
increase in pressure at the inlet to the contraction zone. It is this step that they reject
as unphysical. Our model describes a gradual change in stress at the surface, and we
obtain a smooth profile for the pressure in a non-monotonic solution. We therefore
see no reason to reject this type of solution on the basis of the pressure profile.

We now generate Q = Q(h`) for a given set of parameters, setting P = 0.5,T = 0.5,
CI = 0.1, and varying h` from 0.1 to 1. The variation of Q with h` is shown in figure 10.
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with P = 0.5, T = 0.5 and CI = 0.1.

Surprisingly, the flux increases as h` decreases, in contrast with the surfactant-free
case. We return to examine this behaviour further in § 6.

We show the thickness of the transition region and the corresponding concentration
profiles for h` between 0.1 and 1 (using the same parameter values) in figure 11. These
may be thought of as time snapshots of the transition region as the lamella thins
from h` = 1 to h` = 0.1. We calculate B for each of the snapshots and find that, for
h` > 0.6, B < 1, while for the other solutions B > 1. Examining the solutions closely
for large negative ξ, we see that the solutions are indeed oscillatory when h` > 0.6.

Notice that the condition (4.28) for oscillatory solutions contains the factor Q/h
3/2
` ,

which increases as h` decreases, with the flux as shown in figure 10. Hence, (4.28)
implies that the oscillations at −∞ die away as the film thins, as is supported by
the numerical evidence. Note, however, that for h0 = 0.3, 0.4 and 0.5, a single dimple
remains close to ξ = 0 even after the small oscillations have died away. This nonlinear
effect results from the interplay between all the physical mechanisms included in the
model, and there does not seem to be any simple physical or mathematical criterion
for the appearance of this phenomenon. However, we note that dimples were seen in
the experiments described in Joye et al. (1992).

We are now in a position to determine the time taken for the lamella to drain.
With Q(h`) as shown in figure 10, we integrate (3.7) numerically to find the evolution
of the lamella thickness, as shown in figure 12. From the graph, it appears that h`
may tend to zero in finite time. Whether this does occur depends on the behaviour
of Q as h` → 0. It is difficult to obtain this behaviour accurately from the numerical
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Figure 12. Graph showing lamella thickness versus time for P = 0.5, T = 0.5 and CI = 0.1.

solution of (4.15)–(4.18), and in fact there is a serious problem with the limit h` → 0,
as we shall see in § 6. In any case, as pointed out in § 3.1, when the lamella becomes
sufficiently thin, other physical effects not included here become important. As there,
we impose a critical thickness h∗rup = 0.1 h0 at which the lamella ruptures. The lifetime
of the lamella is then the time taken for h` to decrease from 1 to 0.1, which we
calculate to be trup = 9.085.

Using the time scale L/U ≈ 10 s, we calculate the dimensional rupture time to be
t∗rup ≈ 90 s for the parameter values chosen here. This is of the correct order and is
certainly much closer to the time scale for rupture of a typical foam film than the
prediction given by the surfactant-free theory.

5.2. Solution with parabolic flow

We now reintroduce the parabolic velocity profile, i.e. allow β to be non-zero, and
examine the flow behaviour as we approach the Plateau border. Using (2.4) and the
asymptotic form for h given in (4.21), we find expressions for the surface velocity us
and the centreline velocity ucl , given by

us = 1
2
[(2 +P)CI −P]βQT+ O

(
1

ξ

)
, (5.2)

ucl = − 1
4
[(2 +P)CI −P]βQT+ O

(
1

ξ

)
. (5.3)

Thus, us > 0, ucl < 0 if K < 1 and vice versa. Since us and ucl always take different
signs, eddies are set up at the entrance to the Plateau border, with direction of rotation
being determined by K.

We solve the transition region model and, again, observe both monotonic and
nonmonotonic solutions. Now that the liquid velocity is no longer uniform, we
visualize the flow by plotting the velocity field, using the vertical component

v =
Q

h2
hxy − βhxxxx

(
h2

4
y − y3

)
− β

2
hhxhxxxy. (5.4)

First, we illustrate a monotonic solution by setting T = 5, P = 5, CI = 0.5,
h` = 0.8 and β = 1, for which we find that Q = 2.008 and hence B = 1.97 > 1.
Since K > 1, we predict us < 0, ucl > 0 as ξ → ∞. We show the transition region
shape and the velocity field in figure 13. We observe a monotonic profile, in which
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the velocity decreases as the liquid approaches the Plateau border, and the centreline
velocity remains positive while the surface velocity becomes negative. Eddies are set
up at the entrance to the Plateau border which remove liquid from the border along
the free surfaces and return liquid to the border along the centreline.

As a second example, we set T = 5, P = 5, CI = 1, h` = 0.8 and β = 1, and find
Q = 0.2095. We calculate B = 0.086 < 1, implying oscillatory behaviour at −∞, and
since K < 1, we expect that us > 0 and ucl < 0 as ξ → +∞. Plots of the transition
region shape and velocity field in this case are shown in figure 14. We observe a
non-monotonic solution in which the velocity decreases in magnitude as the liquid
approaches the Plateau border, this time becoming negative on the centreline while
remaining positive on the free surfaces. In contrast to the previous case, eddies are
now set up at the entrance to the Plateau border which remove liquid from the border
along the centreline and return liquid to the border along the free surfaces.

It is worth emphasizing that the cases us > 0 and us < 0 are not dependent on
whether the solution is monotonic, but merely on whetherK is greater or less than 1
(which also determines whether C approaches 1 from below or above). To illustrate
this, we show the surface and centreline velocities as β is increased from zero to one
for each of these two cases in figure 15.
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Figure 16. Graph showing how the flux varies with h`, for β = 0 (solid line), 0.5 (dotted line), 1
(small-dashed line), 2 (dot-dashed line) and 5 (large-dashed line). The other parameters are taken
to be P = 0.5, T = 0.5 and CI = 0.1.

When β = 0, the liquid velocity is everywhere positive. With T = 5, P = 5 and
CI = 0.5 so that K > 1, increasing β from zero (with CI and P fixed) creates a
stagnation point which travels down the free surface from ξ = +∞. The centreline
velocity remains positive everywhere in this case. With T = 5, P = 5 and CI = 1
so that K < 1, increasing β from zero creates a stagnation point on the centreline
which travels in from infinity, while the surface velocity remains positive.



The drainage of a foam lamella 399

1.0

t
2 64 8

0.8

0

h
F

0.6

0.4

0.2

Figure 17. Graph showing how the thickness of the lamella varies with time, for β = 0 (solid line),
0.5 (dotted line), 1 (small-dashed line), 2 (dot-dashed line) and 5 (large-dashed line). The other
parameters are taken to be P = 0.5, T = 0.5 and CI = 0.1.

9

trup

2 43 5

8

1

7

6

5

â

Figure 18. Graph showing how the rupture time varies with β. The other parameters are taken to
be P = 0.5, T = 0.5 and CI = 0.1.

Finally, we fix a given set of parameters, P = 0.5, T = 0.5 and CI = 0.1, vary h`
between 0.1 and 1, and calculate Q(h`), for various values of β, as shown in figure 16.
As for β = 0, we find that Q increases as h` decreases. We also see that the flux
increases as β increases. By integrating (3.7), we then determine the evolution of the
lamella thickness h`, as shown in figure 17, and thereby estimate the rupture time as
the time for h` to decrease to a tenth of its original value as a finction of β, as shown
in figure 18. We see that the time to rupture decreases as β increases. For β = 1, we
find that the rupture time is trup = 6.99, and thus the dimensional lamella lifetime
is t∗rup ≈ 70 s, which is slightly smaller than the corresponding value with β = 0. We
stress that the main effect of including non-zero β is that it either retards the surface
flow and accelerates the centreline flow, or vice versa, depending on the size of K. It
appears that its net effect on the drainage rate is relatively small.

5.3. Solution with negligible diffusion

In this section, we consider the parameters relevant to a solution of the surfactant
CTAB (described in detail in Manning-Benson et al. 1997; Bain et al. 2000), which has
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diffusivity D ≈ 5× 10−10 m2 s−1 and adsorption length η ≈ 10−5 m. The viscosity and
surface tension are given by µ ≈ 10−3 kg m−1 s−1 and γ ≈ 7 × 10−2 N m−1, while the
variation of surface tension with concentration is (dγ∗/dC∗) ≈ 2.5× 10−2 N m2 mol−1.
We consider a dilute solution with C0 ≈ 2×10−3 mol m−3, and a lamella with the same
approximate dimensions as in § 3, namely h0 ≈ 10−6 m, L ≈ 10−3 m, a ≈ 4 × 10−4 m.
The relevant dimensionless parameters are found to be

P ≈ 10−1, β ≈ 300, T ≈ 1.

The size of β indicates that the velocity scaling chosen in (4.1) is inappropriate here;
u should be rescaled with β, which corresponds to choosing

U =
γ

12µ

(
h0

a

)3/2

≈ 7× 10−4 m s−1. (5.5)

Note that this is an order of magnitude smaller than the pure viscous velocity
scale (3.2). Our time scale for lamella drainage then becomes T = L/U = 1.4 s, while
the time scale for convection in the transition region becomes T = Lδ/U = 3×10−2 s.
Thus, in order for our assumption of thermodynamic equilibrium to be valid, the
time scales for adsorption and desorption must be much less than 3× 10−2 s.

The domain decomposition performed in § 4 also applies here; we have a capillary-
static Plateau border, in which the surfactant concentration is effectively constant,
and a Marangoni-dominated lamella, in which exactly the same model (4.4)–(4.9)
applies. The only difference comes when we consider the transition region, where we
find that the new velocity scale makes diffusion O(1/β) compared to convection. If
we therefore neglect diffusion, the transition region model becomes

(ūh)ξ = 0, (5.6)

hhξξξ −TCξ = 0, (5.7)

P∗hūCξ + 2(usC)ξ = 0, (5.8)

us = ū− 1
2
h2hξξξ, (5.9)

with the same matching conditions as before. Here, P∗ = h0/η.
Now, it might have been anticipated that neglecting diffusion would lead to a

reduction of order and hence a singular perturbation problem. This does not occur
because, as in Breward et al. (2001), the fluid–surfactant interaction gives rise to a
diffusive term quite independently of any bulk or surface diffusion. This can be seen
from the simplification of (5.6)–(5.9) analogous to (4.17)–(4.18), namely

T(C − C`) = hhξξ − 1
2
h2
ξ, (5.10)

ThCCξ = PQ(C − C`) + 2Q

(
C

h
− C`

h`

)
. (5.11)

This diffusion-free model is likely to apply to many different surfactants whose
diffusion coefficient is similar to that for CTAB.

Guided by the parameter values estimated above, we set T = 1, P∗ = 0.1 and
CI = 0.1. As before, we vary h` between 0.1 and 1 to find Q as a function of h`. We
show the solution for Q as a function of h` in figure 19; the behaviour is qualitatively
the same as that shown in figure 10. In this case, the dimensional rupture time is found
to be t∗rup ≈ 5 s, which is a plausible time scale for the collapse of a film stabilized by
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Figure 19. Graph showing Q against h` for P∗ = 0.1, T = 1 and CI = 0.1.
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Figure 20. Graph showing Q against h` for CI = 0.5, P = 5 and T = 5.

CTAB. Neglecting diffusion has not made an appreciable difference to the qualitative
behaviour of the model.

6. The large-flux limit
While attempting to find numerical solutions to the transition region model, we

observed the following unexpected behaviour. For certain parameter regimes, Q
appears to approach infinity at a finite value of h`. We illustrate this behaviour in
figure 20, for the regime CI = 0.5, P = 5, β = 0 and T = 5. We were unable to
find a value of Q for h` 6 0.59 in this case. In this section, we present an asymptotic
argument as to why this occurs, which also explains why the flux increases as the
thickness decreases in the solutions presented earlier.

It is convenient to eliminate C between (4.17) and (4.18), and then to reduce the
order by setting h2

ξ = g(h) (the solutions of interest here are all monotonic, so there
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is no difficulty in defining g(h)). The problem becomes

(1 +βTC` + 1
2
β (hgh−g))

√
gghh =

Q

h3
(2 +Ph)(hgh−g) +

4QTC`
h3

(
1− h

h`

)
, (6.1)

where

g(h`) = 0, g′(h`) = 0, (6.2)

g ∼ 2h− 2T(1− C`) as h→∞. (6.3)

Now, instead of seeking Q as a function of h`, we let Q → ∞ and deduce the
corresponding behaviour of h`.

Note that the limit Q → ∞ is singular since it removes the highest derivative in
(6.1). However, as h becomes large to match with the Plateau border, this term comes
back in at leading order. The appropriate scaling depends on β. If β = 0, we choose
h = Q2H and g = Q2G, after which we seek an outer solution as an asymptotic
expansion in powers of 1/Q2.

The leading-order problem reads

H3
√
G0G0HH = 1

2
PH(HG0H − G0), (6.4)

with

G0 ∼ 2H as H →∞. (6.5)

It is fortunate that we can spot a solution to (6.4) that also satisfies (6.5), namely

G0 = 2H. (6.6)

We need not look for a more general solution since we have already established that
the solution emanating from ξ = ∞ is unique.

If β 6= 0, the appropriate scaling is h = Q2/3H and g = Q2/3G, after which we seek
an asymptotic expansion in powers of 1/Q2/3. The leading-order problem in this case
reads

1
2
β(HG0H − G0)H

3
√
G0G0HH = P(HG0H − G0), (6.7)

with (6.5). As in the β = 0 case, the unique solution is (6.6).
We now consider (6.1) in the limit Q → ∞. We seek an asymptotic solution in

powers of 1/Q, and find that the leading-order solution which matches with (6.6)
reads

g0 = 2h

[
1 +

CI (2 +P)T
2

log

( Ph
2 +Ph

)]
+

2TCI (2 +P)h`
2 +Ph` . (6.8)

Now we find h` as a function of Q (in the limit Q → ∞) by applying the left-hand
boundary conditions g(h`) = g′(h`) = 0. We set

h` ∼ hc + hc1/Q+ hc2/Q
2 + · · · ,

so that hc is the value of h` (if it exists) at which Q approaches infinity, and satisfies
g0(hc) = 0, i.e.

2hc

[
1 +

CIT(2 +P)

2
log

( Phc
2 +Phc

)]
+

2TCI (2 +P)hc
2 +Phc = 0. (6.9)

For given CI ,P andT, (6.9) has one positive solution hc satisfying g0(hc) = g′0(hc) = 0;
the trivial solution hc = 0 can be rejected since g′0(0) 6= 0.

For T = 5, P = 5 and CI = 0.5, the solution is hc ≈ 0.587, so our numerical
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Figure 21. Graph showing the function F(T∗) defined in (6.11).

observation that Q → ∞ for h` close to 0.59 can be explained asymptotically. Two
questions remain: first, why did we not observe similar behaviour in our other
numerical calculations; and secondly, what happens after h` reaches hc?

With T = 0.5, P = 0.5 and CI = 0.1, we calculate hc = 4.4× 10−7. Thus, for these
particular parameter values, Q tends to infinity at a value of h` that is practically zero,
in agreement with the behaviour plotted in figure 10 from our numerical calculations.
In general, the positive solution of (6.9) can be written as

hc =
1

PF(T∗) where T∗ = CI (2 +P)T, (6.10)

and the function F is given inplicitly by

T∗ = − 2(2 + F(T∗))
(2 + F(T∗)) log

[
2 + F(T∗)
F(T∗)

]
+ 2

. (6.11)

The behaviour of F(T∗) is shown in figure 21. Notice that F(T∗) has asymptotic
behaviour

F ∼ 2 exp

(
−1− 2

T∗
)

as T∗ → 0 (6.12)

and hence, if T∗ is small, then F is exponentially small. This explains why, for many
of our calculations, hc was effectively zero (to within our numerical tolerance) and we
did not observe Q tending to infinity at finite h`.

At the other extreme, F ∼ √T∗ as T∗ → ∞ and so, for large enough T∗, we will
have hc > 1. This corresponds to the critical thickness exceeding the initial thickness
of the lamella, and in such a case we cannot even start to follow the evolution of h.

In practice, the flux cannot become infinite on physical grounds. As Q becomes
large, some physical effects that have been neglected, for example the extensional
viscous term in (2.3) or inertia, must become important and regularize the model.
Moreover, the inclusion of these effects should then allow the behaviour of Q for
h < hc to be described, and we plan to pursue this approach in future work (see
§ 7). For the moment, we hypothesize that the result of such an analysis would be
that the lamella rapidly thins and ruptures, over a time scale much shorter than that
considered here, once the lamella thickness reaches its critical value.
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7. Conclusions and discussion
In this paper, we have developed and analysed models describing surfactant-

free and surfactant-stabilized drainage of a foam lamella. Our solution procedure
involves decomposing the liquid domain into a capillary-static Plateau border, a
time-dependent thinning film and a quasi-steady transition region between the two.
In the absence of surfactant, the lamella is governed by viscous effects, the Plateau
border by capillary effects and the transition region by a combination of the two.
By drawing on the solution of an analogous problem by Howell (1999), we obtained
the flux Q(h`) of liquid from the lamella into the Plateau border as a function of the
lamella thickness h`. The flux decreases as the lamella thickness decreases, such that it
takes an infinite time for the thickness to reach zero. We therefore imposed a critical
thickness at which the lamella spontaneously ruptures to estimate the lamella lifetime.
For typical parameter values, this lifetime is extremely short without the stabilizing
influence of surfactant.

In the presence of a soluble surfactant, we performed a similar domain decom-
position, this time into a Marangoni-dominated lamella, a capillary-static Plateau
border and a transition region in which Marangoni and capillary forces balance. We
found an explicit relationship (4.10) between the surfactant concentration and the
film thickness in the lamella. We also obtained a coupled boundary-value problem,
(4.15)–(4.18), for the concentration and film thickness in the transition region. This
problem must, in general, be solved numerically, but we showed that it is sufficient, in
principle, to determine the flux Q of liquid from the lamella into the Plateau border
as a function of the lamella thickness h`.

We performed numerical calculations to illustrate several classes of solution that
may arise for three particular parameter regimes of interest. In the first case, there is a
plug flow in the transition region and the film thickness may or may not be monotonic.
It is interesting that lamellae with dimpled edges have been reported experimentally,
and our model may provide a mechanism for such observations. We found that the
flux increases as the film thickness decreases, in contrast with the surfactant-free case,
which suggests the possibility of finite-time rupture. Using typical parameter values,
we estimated a time to rupture of the order of 102 s, which indicates that surfactant
effects can indeed greatly enhance lamella lifetime.

In the second case considered, the transition region flow is parabolic. We showed
that eddies are produced at the entrance to the Plateau border, which may either draw
liquid into the Plateau border along the centreline and out along the free surfaces
or vice versa. The latter behaviour is counter-intuitive, since we expect Marangoni
traction at the free surfaces to oppose Plateau border suction. We determined the
condition on the physical parameters that distinguishes between these two possibilities.
Non-uniformity of the flow in the transition region was found to have a relatively
small effect on the drainage rate, and hence on the lamella lifetime, compared with
the plug flow case.

Using parameters for a typical surfactant, we showed that transport by diffusion
may be neglegible. We found that ignoring diffusion does not reduce the order of the
problem, because of the diffusive nature of the fluid–surfactant interaction. Realistic
parameters for a dilute surfactant solution give a rupture time scale of order 10 s.

In all these situations, the introduction of surfactant increases the time scale for
lamella rupture and results in a flux that increases as the lamella thickness decreases.
Physically, since the viscous stress due to the liquid flow is negligible, the dominant
stress balance is between the Marangoni traction and the capillary pressure. The
flux alters so as to provide the distribution of surface surfactant that is required to
generate the Marangoni traction.
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In some parameter regimes, we found that the flux appears numerically to approach
infinity at a finite critical value hc of the lamella thickness. We showed that this
behaviour is, in fact, generic, although hc may be extremely small in many cases.
Physically, when the film is thick, the dominant mechanism for surfactant transport is
bulk convection, which tends to sweep surfactant towards the Plateau border. As the
film thins, surface convection becomes increasingly important. When these two effects
balance, an infinite flux is required to cause the order one change in the concentration
of surfactant that is necessary to provide the appropriate level of Marangoni traction.

We plan to examine the issue of the critical thickness in a subsequent study that
includes further physical effects when the flux becomes large, and thus allows us
to continue our solution below h = hc. Candidate mechanisms include extensional
viscous effects, inertia and surface viscosity. We intend to investigate the ability of
each of these to regularize the problem and thus allow us to describe fully the drainage
of a lamella from its initial thickness to its rupture thickness

We have, throughout this paper, assumed that the surfactant concentration is small.
To relax this approximation, we would have to use nonlinear relationships between
the bulk and surface concentrations and the surface tension (the Langmuir isotherm
and the Frumkin equation, respectively; see Adamson 1982), resulting in a more
complicated system. Nevertheless, the solution procedure would be identical to that
described in this paper and we would expect the results to be qualitatively similar.
Note that the inclusion of a nonlinear relationship between the surface tension and
surface concentration of surfactant can result in the localization of surfactant in some
situations (see Naire, Braun & Snow 2001).

The analysis of our mathematical model illuminates the well-documented phe-
nomenon that differences in the surface concentration of surfactant between a lamella
and a Plateau border in a foam drive a flow of liquid which retards the inherent liquid
drainage into the Plateau border. Stagnation points may develop on the free surface
and a parabolic flow profile can develop in the ‘entrance’ to the Plateau border (i.e. in
our transition region). These observations are often presented using arguments that
are less precise (Barigou & Davidson 1994, for example) than those given in this
paper.

Our long-term goal is to use the insight into lamella drainage that we have gained
here as a building block in the generation of a macroscopic model to describe foam
behaviour.
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